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Preface

The widespread availability of computers over the past couple decades has had a

great impact on mathematics. Certainly any number theorist can cite famous exam-

ples of how computers were used in proving theorems, creating new conjectures,

disproving conjectures, and speeding up computation that would otherwise be very

time consuming or impossible if done by hand. To the number theorist, the computer

is becoming an important tool in his or her research.

But computers have also changed the way mathematicians think about solving

problems. No longer are they limited to what they can do by hand, but now they can

think of what a computer can do e�ciently. This is re
ected in how the language of

mathematics has changed. For instance, when we design a new algorithm to solve a

problem, we ask if it runs in \polynomial time" or if it can be easily \parallelized".

Factoring integers is perhaps the quintessential example of the importance of

computers in mathematics. It is one of the oldest and most troublesome problems in

mathematics. However, only in the last two or three decades has real progress been

made. During this time, mathematicians have discovered some factoring algorithms

that have sub-exponential running time. Moreover, their algorithms are practical:

they have been used to factor integers over 100 digits long.

This thesis is about using computers for factoring. Our emphasis is on how to

correctly and e�ciently put these algorithms on computers. Our main interests are

in the implementation of the self-initializing quadratic sieve factoring algorithm and

the parallelization of the block Lanczos linear algebra algorithm, which is becoming

the method of choice for solving the matrix stage of factoring algorithms. We have
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also tried to highlight the most signi�cant contributions in the evolution of the

quadratic sieve. For this reason, it is somewhat expository.
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Chapter 1

Introduction

There are many factoring algorithms that are very fast for factoring integers which

have small prime factors, or integers that are of a special form. These algorithms

tend to be not so e�cient when it comes to factoring a general integer that is a

product of two primes, each of which are about the same size. However, there are

algorithms that factor numbers like these in about the same amount of time as they

factor any number of the same size. Such factoring algorithms are called general

purpose, since their speed does not depend on the size of the prime factors, the

number of prime factors, or the form of the number.

In practice, the best general purpose factoring algorithms known are the

quadratic sieve (qs) [19] and the number �eld sieve (nfs) [15]. Versions of qs

have been used to set all general purpose factoring records between 1984 and 1994.

The largest was the factorization of the 129 digit number known as RSA-129 [2].

The asymptotically faster nfs is relatively new compared to the qs, and wasn't

believed to be practical at �rst. It wasn't until after RSA-129 that the nfs became

developed enough to factor some large integers e�ciently. One of the necessary

ingredients to its success was the implementation of some very fast linear algebra

routines. In 1996, nfs was used to factor a 130 digit number known as RSA-130,

breaking the qs record by one digit. The researchers who accomplished this claim

\sieving for RSA-130 could have been done in less than 15% of the time spent on

the 129 digit number." [8]

1
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So if the nfs is that much faster than the qs for numbers this big, and since it

is asymptotically faster, why would we waste any more time studying the quadratic

sieve? We have four reasons.

First, we still question the practicality of the nfs in its present form. Both qs

and nfs require solving a very large, sparse matrix before the factorization can be

completed. For the qs RSA-129 factorization, the matrix had about half a million

rows and columns. Compare that to the nfs RSA-130 factorization where the matrix

had about 3:5 million rows and columns! Solving this matrix took 67:5 CPU-hours

and about 700 megs of memory on a Cray C-90 supercomputer. Extrapolating from

this, factoring a 512-bit number (about 155 digits) with nfs would require solving a

matrix with about 19 million rows and columns. This would take a few gigabytes of

memory and at least a couple months CPU-time using the same algorithm on the

same computer. It is not so easy to get access to a supercomputer like this for a

large memory job that will run for several months. Thus, the matrix stage seems

to be becoming the bottleneck of the nfs, and may prevent it from being used for

much larger factorizations. In contrast, factoring a 512-bit number with qs would

require solving a matrix of approximately 5:5 million rows and columns, which is

only slightly bigger than that which was solved for RSA-130. These extrapolations

are worked out in appendix B.

Second, if the researchers that factored RSA-129 had programs available to them

to solve larger matrix problems, then a larger factor base could have been used for

RSA-129 which might have signi�cantly increased its speed. According to the asymp-

totic analyses, the number of rows and columns in the matrix should be approxi-

mately the square root of the running times for both nfs and qs. So if factoring a

number with qs required k times as much time as that required by nfs, then we would

expect the qs matrix to be about k

2

times the size of the nfs matrix. The discrepancy

between the matrix sizes and running times for RSA-129 and RSA-130 suggests that
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maybe the RSA-129 factor base size was far from optimal. Note, however, that even

with their choice of factor base, RSA-129 was factored somewhat e�ciently. On the

other hand, nobody has yet demonstrated that the nfs is practical with small factor

bases.

Third, the RSA-129 factorization could have been done signi�cantly faster by

using a version of the qs known as the self-initializing quadratic sieve (siqs). Siqs

would have required more computer memory than the qs program used for RSA-

129, but not much more than the nfs programs that were used for the RSA-130

factorization. One of our main goals of this thesis is to convince the reader that

siqs is at least twice as fast as the version of qs which was used for the RSA-129

factorization.

Fourth, we remark that for those people who wish to factor smaller numbers (say,

below 100 digits), qs is unquestionably much faster than nfs, and siqs is the most

optimized version of qs.



Chapter 2

Quadratic Sieve

Suppose we want to factor an integer, N . One way of doing this is to �nd a random

relation of the formX

2

� Y

2

mod N . IfX 6� �Y mod N , then the greatest common

divisor of X � Y and N will be a proper factor of N . This greatest common divisor

can be computed quickly with the Euclidean algorithm.

To �nd X;Y with X

2

� Y

2

mod N , we �rst �nd several relations of the form

u

2

� v mod N where v factors into small primes and u

2

6= v. Such relations will be

called smooth. Let the letter F represent the upper bound for the largest prime

that we will allow to divide the v's (we will say more about how F should be chosen

later). If more of these relations are obtained than there are primes less than F ,

then one can use some collection of the smooth relations to construct a relation of

the form X

2

� Y

2

mod N . Finding which collection of relations to use is a linear

algebra problem, which we describe in chapter 4.

This is the approach of the quadratic sieve, as well as some other factoring

algorithms. But how do we e�ciently �nd the smooth relations? This is where the

sieve comes in. We introduce a quadratic polynomial: g(x) = (x+ b)

2

�N , where b

is chosen to be d

p

Ne (the smallest integer which is larger than the square root of

N). If, for some integer x, g(x) factors into primes less than F , then taking u = x+b

and v = g(x) gives a smooth relation u

2

� v mod N .

For each prime p less than F , we can determine the values of g(x) that are

divisible by p by solving for x in the congruence (x + b)

2

� N � 0 mod p. If N

4
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does not have a square root mod p, then there are no solutions. This implies p

does not divide any values of g(x). Otherwise, let t and �t be the two solutions to

t

2

� N mod p. Solutions to the congruence above are x � �t � b mod p. Notice

that if x is one solution, then x+ p, x+ 2p, x+ 3p, . . . are also solutions. Because

of this, we can sieve some interval to mark all the places which are divisible by p.

After doing this for all p < F , we go back to see which values of g(x) are divisible

by enough of these small primes to signify a smooth relation. One way of identifying

these places is to look about for values of x where the product of the primes is

approximately equal to 2x

p

N . A more practical way altogether is to sieve with

the logarithms of the primes: wherever p divides g(x), add log p to location x in

a sieve array. Then the desired locations are those that have accumulated a value

of approximately log(2x

p

N). Some error must be allowed for rounding, and also

because we do not sieve with prime powers.

Since only about half of the primes p < F will have solutions to t

2

� N mod p,

we only have to sieve with these primes. They are known as the factor base primes.

This also means that when we want to �nd the relation X

2

� Y

2

mod N , we only

need to get more smooth relations than there are primes in the factor base.

If F is chosen in an optimal way, asymptotically about e

(

1

2

+o(1))

p

logN log logN

,

then the running time of the quadratic sieve is e

(1+o(1))

p

logN log logN

. (This is not

rigorously proved. It is derived by heuristic arguments. See appendix A.) This

is sub-exponential. Notice that the running time depends only on the size of the

number N and not the size of its prime factors. The quadratic sieve is summarized

in Figure 2.1.

A few years after Pomerance published the algorithm, some researchers pro-

grammed it and had immediate success. Before long, an improvement in speed

was found which involved replacing g(x) with several di�erent polynomials. This is

known as the multiple polynomial quadratic sieve (mpqs).
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(qs algorithm to factor N)

Compute startup data: Choose F , the upper bound for factor base primes.

Let b = d

p

Ne and g(x) = (x+ b)

2

�N . Determine the factor base primes: those

prime p < F such that there is a solution to t

2

� N mod p. For each factor

base prime p, compute t, a modular square root of N mod p. Then compute and

store soln1

p

= t�bmod p, soln2

p

= �t�bmod p, and l

p

= blog pe (rounding o�).

Sieve stage: Initialize a sieve array to 0's. For each odd prime p in the factor

base, add l

p

to the locations soln1

p

+ ip and soln2

p

+ ip of the sieve array, for

i = 0; 1; 2; : : :. For the prime p = 2, sieve only with soln1

p

.

Trial division stage: Scan sieve array for locations x that have accumulated

a value of at least log(2x

p

N) minus a small error term. Trial divide g(x).

If g(x) factors into primes less than F , then save smooth relation. After

scanning entire sieve array, if we have more smooth relations than primes in

the factor base, then go to linear algebra stage. Otherwise, continue sieving stage.

Linear algebra stage: Solve linear algebra problem described in chapter 4.

For each null space basis vector, construct relation of form X

2

� Y

2

mod N .

Attempt to factor N by computing gcd(X � Y;N). If all null space vectors fail

to give factorization, then return to sieving stage.

Figure 2.1: summary of basic qs algorithm

The problem with using only one polynomial is that the values of g(x) increase

in size as x gets bigger. This makes them less likely to be smooth. Thus, as the

algorithm progresses, smooth relations become less frequent (see [9]). To escape this

problem, we want to be able to change to a new polynomial when the residues of

the current polynomial become too big.

In mpqs, Peter Montgomery suggested sieving polynomials of the form

g

a;b

(x) = (ax+ b)

2

�N = a

2

x

2

+ 2abx+ b

2

�N

where a; b are integers. The graph of g

a;b

(x) is a parabola, and if we force 0 < b < a,

then it will have axis of symmetry between �1 and 0. We will be sieving on this

polynomial for values of x in an interval, say [�M;+M ] where M is some integer.

The largest values of g

a;b

(x) for x 2 [�M;+M ] are � a

2

M

2

� N and the smallest
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� �N . We take a �

p

2N

M

to make the largest and smallest values about the same

size in absolute value.

Montgomery suggested choosing b so that b

2

�N is divisible by a, say b

2

�N = ac

for some integer c, so that g

a;b

(x) = a(ax

2

+ 2bx + c). This guarantees that every

value we sieve on will be divisible by a. Moreover, taking u = ax+ b and v = g

a;b

(x)

gives a relation of the form u

2

� v mod N . Suppose we choose a = q

2

for some

integer q. If ax

2

+ 2bx + c factors into primes < F , then the relation of the form

(ax + b)

2

� q

2

(ax

2

+ 2bx + c) mod N is just as good as a smooth relation. For

example, we may write it as ((ax+ b)q

�1

)

2

� ax

2

+ 2bx + c mod N . So we are

essentially sieving on the 2M + 1 values of g

a;b

(x)=a = ax

2

+ 2bx+ c, which are all

bounded above by �M

q

N=2.

The condition that b

2

� N is divisible by a means that b

2

� N mod q

2

. In

particular, if we choose q as a prime such that N is a quadratic residue modq, then

we can quickly compute a value for b using a modular square root algorithm and

lifting via Hensel's lemma. The mpqs is summarized in Figure 2.2.

But how big should M be? If M is chosen very large then each polynomial will

yield many values to sieve on, but the size of these residues will be rather large. This

would not be good, since the entire reason why we are using multiple polynomials

is so that the residues are small. So to keep the residues as small as possible, we

should choose M very small. Of course we don't get many residues per polynomial,

but who cares? We can always generate as many new polynomials as we need so

that we have enough to sieve on.

The reasoning above is not quite correct, because it ignores the fact that gen-

erating new polynomials takes time. Every time coe�cients a; b are chosen for a

new polynomial g

a;b

(x), we must do some work to determine where the factor base

primes divide g

a;b

(x). This is called the initialization stage. For each prime p in the

factor base, we again let t denote a solution to t

2

� N mod p. g

a;b

(x) is divisible by
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p for x � a

�1

(�t� b) mod p (assuming p does not divide a, but let's ignore that for

the moment). This computation requires doing multi-precision arithmetic (reducing

a mod p and b mod p for all primes in the factor base) and computing an inverse.

Now if M is chosen too small, then we will be spending most of our time on the

initialization stage and very little time sieving. This is wasteful.

So somewhere there is a nice value of M , not too small nor too large, which

optimizes the speed of the algorithm for the number being factored. Silverman gives

a table of good parameters (values for F and M) for numbers up to 66 digits [25].

Realize that the reason why we couldn't choose M too small was because we

would be wasting too much time on the initialization stage. However, if the initial-

ization stage took no time, then certainly a much smaller M would be better, since

this would give smaller residues at no cost, and therefore smooth residues would be

found more frequently. It then should not sound too unreasonable to believe that

the faster we can perform the intialization, the more we would bene�t from using a

smaller M .

How much of a speedup can we get with a smallerM? Assuming the polynomial

values of g

a;b

(x) are randomly distributed, we can expect 1 out of every u

u

values to

be smooth, where u =

logM

p

N

logF

[4]. Asymptotically, logF �

1

2

p

logN log logN (see

appendix A). Let's consider numbers N around 10

70

. Suppose M is 4 million, which

is a reasonable choice determined from our own experimentation. Then u � 6:694,

so approximately 1 in every 336,000 values will be smooth. If we take M one-tenth

as big, then u � 6:533, so about 1 in every 211,000 values will be smooth. Though

the u

u

approximations are not always very accurate, their ratios usually are fairly

good approximations to the true ratio. So, with M one-tenth as big, smooths occur

� 1:6 times more frequently. Assuming the ratio of times for the sieving stages and

initialization stages are the same in both cases, we expect a speedup factor of 1:6.

Taking M one-twentieth as big, then the speedup factor is � 1:8. Note, however,
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that in practice, people always use smaller values for F than the asymptotic formula.

For our implementation, we found F = 350,000 to be optimal for 70 digit numbers.

Using this value of F , the speedup factors become about 1:7 and 2:0 respectively.

In 1988, several methods for speeding up the initializing stage of mpqs were

published in [23]. At the end of section 5 of this paper, the authors comment about

one particularly fast way of initializing, but suppress most of the details. This was

later published in [1], and is known as the self initializing quadratic sieve (siqs).

2.1 The Self Initializing Quadratic Sieve

The self initializing quadratic sieve provides us with a fast way to change polyno-

mials. This makes it bene�cial to use a smallerM than in mpqs. SinceM is smaller,

the residues are smaller and smooth relations are found more frequently. This is why

we expect siqs to be signi�cantly faster than mpqs.

The siqs uses the same polynomials as mpqs, g

a;b

(x) = (ax + b)

2

� N where

b

2

� N = ac. Again, we have g

a;b

(x) = a(ax

2

+ 2bx + c). For mpqs, we were able

to ignore the a term in front because we took it as a square of a large prime. For

siqs, we take a to be a product of primes in the factor base, so that g

a;b

(x) is smooth

if and only if ax

2

+ 2bx + c is smooth. Furthermore, this allows it to get several

polynomials for each value of a, since there can be several choices for b corresponding

to each a. Suppose the leading coe�cient is a = q

1

� � � q

s

, where the q

l

's are distinct

odd primes in the factor base. To generate a polynomial, we need to �nd b satisfying

b

2

� N mod a. There are actually 2

s

distinct b (mod a) that satisfy this, but only

half of the b's will be used since g

a;b

(x) gives the same residues as g

a;�b

(x). Hence

we can get 2

s�1

polynomials.

We want to construct integers B

l

(1 � l � s) that have the property

B

2

l

� N mod q

l

and B

l

� 0 mod q

j

for 1 � j � s; j 6= l:
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Then the Chinese Remainder Theorem tells us that the square of any combination

of the form �B

1

� : : : � B

s

will be congruent to N modulo a (the cross terms of

the form �B

i

B

j

with i 6= j disappear since they are divisible by all the q

l

's). In

other words, these are exactly the values of b. Since we only want one of each b,�b

pair, we can �x the sign of B

s

to be positive. Now the reader can verify that the

B

l

are given by the formula

a

q

l

� 


a;q

l

where 


a;q

l

is the smallest positive residue of

t

q

l

� (a=q

l

)

�1

mod q

l

and t

2

q

l

� N mod q

l

. There are two choices for t

q

l

. We choose

the one that makes 


a;q

l

smaller.

We take b

1

to be B

1

+ : : :+B

s

mod a. The remaining values of b can be quickly

computed by applying a formula for a Gray code:

b

i+1

:= b

i

+ 2(�1)

di=2

�

e

B

�

where 2

�

k 2i for i = 1 to 2

s�1

� 1. For information on Gray codes, see appendix C.

Example: Suppose s = 3 and q

1

= 5, q

2

= 7, and q

3

= 11 (a = 385). We will

compute four solutions to b

2

� 291 mod 385. The reader should verify B

1

= 154,

B

2

= 110, and B

3

= 70. So b

1

:= B

1

+B

2

+ B

3

= 334. Then b

2

:= b

1

� 2B

1

= 26,

b

3

:= b

2

� 2B

2

= �194, and b

4

:= b

3

+ 2B

1

= 114. Notice that each b

i+1

is obtained

from b

i

by doing a single addition or subtraction of one of the saved values of 2B

�

.

By doing a little precomputation, the initialization stage can be done quickly for

the 2

s�1

polynomials. For the �rst polynomial, solve g

a;b

1

(x) � 0 mod p for each

prime p in the factor base except the primes dividing a.

1

Then compute and store

in memory the values

2B

j

a

�1

mod p for j = 1 to s� 1

for all p in the factor base which do not divide a. Now, to initialize polynomial

g

a;b

i+1

(x) for the prime p, g

a;b

i+1

(x) � 0 mod p must be solved. But this can be done

1

For primes q

l

dividing a, g

a;b

(x)=a is divisible by q

l

if and only if x � �c(2b)

�1

mod q

l

.

However, one may choose not to sieve with these primes. Just allow a little extra error

when searching for smooth reports to make up the di�erence.
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quickly by taking the solutions to g

a;b

i

(x) � 0 mod p and adding (�1)

di=2

�

e

times the

saved value of 2B

�

a

�1

mod p, where 2

�

k 2i, and then reducing mod p if necessary.

This requires only a few single precision additions, which takes much less time than

the multi-precision arithmetic and the computation of inverses required by mpqs.

Altogether, setting up the Gray code for the 2

s�1

polynomials can be done in the

same order of time that it would take mpqs to initialize only s polynomials. Thus,

the amortized cost of initialization is greatly reduced. We refer the reader to Figure

2.3 for a summary of the siqs initialization stages.

We have two important comments. Although we generally want a to have as

many divisors as possible, the q

l

dividing a should not be too small. This is because

each q

l

divides only one out of every q

l

sieve locations, and the other primes p divide

2 out of every p sieve locations (since there are 2 square roots mod p). So choosing

small q

l

can signi�cantly decrease the probability of �nding smooth residues. In

our implementation, the divisors were always chosen larger than 2,000. Moreover,

small prime divisors can also increase the probability of getting redundant relations

(essentially duplicate data), which is talked about in the next chapter. The second

comment is that siqs requires more memory than mpqs. However, one need not

store all the values of 2B

j

a

�1

mod p if memory is limited. The higher indices are

used much less frequently. A speedup over mpqs can still be obtained if one can

only store the values of a

�1

mod p and 2B

j

a

�1

mod p for j = 1 and 2, for example.

This is explained in [1].

Our goal is to show the practical side of siqs. We have programmed both mpqs

and siqs, and have repeatedly experimented with these programs on several numbers

of di�erent sizes. We give several tables showing the results of our experiments.

These tables suggest that factoring a large number with mpqs will take about twice

as much time as factoring that number with siqs, assuming optimal parameters are

chosen at least for mpqs.
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We want to emphasize that our mpqs and siqs programs were written exactly

for comparison reasons. First we programmed mpqs, and then we built onto it the

routines necessary for siqs. The two programs have essentially the same sieving

routines (there are a few extra comparisons needed in the siqs, but the amount of

time for these is negligible). Our sieving routines have not been highly optimized,

but any signi�cant improvement to one program can also be applied to the other.

The next four sections describe our comparisons between siqs and mpqs. In

section 3.8, details are given about our 116 digit record factorization for the Cun-

ningham project.
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(mpqs algorithm to factor N)

Compute startup data: Choose F , the upper bound for factor base primes.

Choose M : we sieve each polynomial in the interval [�M;M ]. Determine

the factor base primes: those prime p < F such that there is a solution to

t

2

� N mod p. For each factor base prime p, compute t, a modular square root

of N mod p, and store in tmem

p

. Also store l

p

= blog pe (rounding o�).

Initialization stage: Find a prime q �

q

p

2N

M

such that N is a quadratic

residue mod q. Let a = q

2

. Compute b, a modular square root of N mod a.

g

a;b

(x) is the polynomial (ax + b)

2

� N . For each prime p in the factor base,

compute soln1

p

= a

�1

(tmem

p

� b) mod p and soln2

p

= a

�1

(�tmem

p

� b) mod p.

Sieve stage: Initialize a sieve array of length 2M + 1 to 0's. Assume the

indices of the sieve array are from �M to +M . For each odd prime p in the

factor base, add l

p

to the locations soln1

p

+ ip for all integers i that satisfy

�M � soln1

p

+ ip � M . Similarly, add l

p

to the locations soln2

p

+ ip for all

integers i that satisfy �M � soln2

p

+ ip � M . For the prime p = 2, sieve only

with soln1

p

.

Trial division stage: Scan sieve array for locations x that have accumulated

a value of at least log(M

p

N) minus a small error term. Trial divide g

a;b

(x). If

g

a;b

(x) factors into primes less than F , then save smooth relation. After scanning

entire sieve array, if we have more smooth relations than primes in the factor

base, then go to linear algebra stage. Otherwise, go to initialization stage.

Linear algebra stage: Solve linear algebra problem described in chapter 4.

For each null space basis vector, construct relation of form X

2

� Y

2

mod N .

Attempt to factor N by computing gcd(X � Y;N). If all null space vectors fail

to give factorization, then return to sieving stage.

Figure 2.2: summary of mpqs algorithm
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Initialization stage for �rst polynomial:

Find primes q

1

; : : : ; q

s

in the factor base whose product is �

p

2N

M

. Let a =

Q

s

l=1

q

l

.

For l = 1 to s

Compute 
 = tmem

p

� (a=q

l

)

�1

mod q

l

.

If 
 >

q

l

2

then replace 
 with q

l

� 
.

Let B

l

=

a

q

l

� 
.

For each prime p in the factor base that does not divide a

Compute ainv

p

= a

�1

mod p

For j = 1 to s

Compute Bainv2

j;p

= 2 �B

j

� ainv

p

mod p

Let b = B

1

+ : : :+B

s

and g

a;b

(x) = (ax+ b)

2

�N .

For each prime p in the factor base that does not divide a

Compute soln1

p

= ainv� (tmem

p

� b) mod p

Compute soln2

p

= ainv� (�tmem

p

� b) mod p

Initialization stage for the next 2

s�1

� 1 polynomials:

(Assume we just sieved polynomial #i, so we are initializing polynomial #(i+1),

1 � i � 2

s�1

� 1)

Let � be the integer satisfying 2

�

k 2i.

Let b = b+ 2� (�1)

di=2

�

e

�B

�

and g

a;b

(x) = (ax+ b)

2

�N .

For each prime p in the factor base that does not divide a

Compute soln1

p

= soln1

p

+ (�1)

di=2

�

e

�Bainv2

�;p

mod p

Compute soln2

p

= soln2

p

+ (�1)

di=2

�

e

�Bainv2

�;p

mod p

Figure 2.3: summary of siqs initialization stages



Chapter 3

Computational results

In order to say factoring algorithm A is so many times faster than algorithm B, it

is necessary to �nd the best time one can factor a number using algorithm A, and

the best time with algorithm B. This should be done with many di�erent numbers.

Even though two algorithms may be very similar, it is wrong to assume that the

parameters that give the best time for one algorithm will also give the best time for

the other.

In addition, if one is to claim that algorithm A is twice as fast as algorithm B,

then that person should also say how this was determined. For example, how many

numbers were the algorithms tested for? How much were the parameters varied,

and which parameters were varied? How much variance was there in the timings?

Is there anything left untested that might a�ect the results? Unfortunately, these

commonsense guidelines have not always been followed in the factoring literature.

Our goal is to convince the reader that siqs is about twice as fast as mpqs, at

least for the size numbers we are factoring. We give tables of our results so that the

reader can draw their own conclusions. Our programs are available by e-mailing the

author.

1

Most of the time in siqs and mpqs will be spent on sieving, and most of the time

for sieving will be memory access. In order to compare these algorithms in a fair

way, one must access memory as e�ciently as possible. In situations like this, it is

1

e-mail address is scontini@alpha.math.uga.edu
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often bene�cial to do some extra computations so that one can take full advantage

of cache memory. Cache memory is fast-access memory that the operating system

controls. When an operating system sees a block of memory that is being accessed

frequently, it is likely that this memory will be put into cache so that the user can

access it quicker.

When sieving, one does not want to put the entire sieve array in memory: sieving

on the whole array at once is an ine�cient use of cache. A considerable speedup can

be obtained by breaking up the sieve interval into blocks. Sieving should be done

by all primes for each block before going to the next block. This requires doing a

little extra work, but the net speedup can be signi�cant.

It is absolutely necessary that this is done when comparing two algorithms like

mpqs and siqs, and also when trying to �nd optimal parameters. For one thing, siqs

will naturally have a smaller optimal value for M than mpqs. If one attempts to

sieve the entire array at once, then siqs has the unfair advantage that its sieve array

is more likely to �t in cache than the mpqs sieve array. This, for example, could

give the false impression that siqs is �ve times as fast as mpqs, when in fact it may

only be twice as fast. As another example, if the entire array is sieved at once, then

the limited size of cache memory may cause a person to incorrectly conclude that

a small value of M is best, when in fact they could factor much faster by using a

larger M and sieving in blocks. Therefore, one should reject any comparison results

or parameter results if the sieve interval is not broken into blocks.

The exact amount that cache memory can help depends on the particular com-

puter. The popular benchmarking program \nsieve" provides us with examples.

This is available via anonymous ftp at `ftp.nosc.mil' in directory `/pub/aburto'.

The program performs the Sieve of Eratosthenes on an array of length 8191 bytes

for a `High MIPS' rating and on an array of 2,560,000 bytes for a `Low MIPS' rating.

Taking an example from a table on the ftp site, a DEC 3000/500X with operating



17

system OSF/1 V1.3-3 has High MIPS 105.7 and Low MIPS 29.2. This shows that

it is over three times faster on small arrays than it is on large arrays.

Our timings were done on Sun SPARC 5 workstations, each having a 85 Mhz

MicroSPARC processor, 64 Kbyte on board cache, and 32 Mbytes of RAM. The

nsieve program rated them as having High MIPS 39.0 and Low MIPS 30.6. Since

for these computers the High and Low ratings are relatively close, we should not

expect to see a great di�erence in timings when breaking the sieve interval into

di�erent block sizes. Nevertheless, we experimented with several di�erent values.

This is referred to as the BLOCKSIZE in our tables.

When M is chosen too small or too large for a particular number, the timings

will be high. When M is chosen just right, the timing should be nearly minimized.

We use the word \nearly" here since sometimes a suboptimal M will give a better

timing due to \luck". This can happen because di�erent M correspond to sieving

on di�erent polynomials: recall, the leading coe�cient is determined by M .

Determination of the optimal factor base depends on whether the double large

prime variation [14] or the single large prime variation is used. In the single large

prime variation, if a residue is found which has all its primes less than F except

one large prime between F and F

2

, it is kept. This is called a partial relation.

If another partial is found with the same large prime, the two can be matched to

get a new smooth relation. Finding these partials takes no extra time. However,

in practice it approximately doubles the net speed in factoring since usually one

needs about half as many \true" smooths as primes in the factor base, and then the

remaining smooths can be obtained by matching the partials. If a small factor base

is chosen, then partials help more: one will �nd that they need a smaller fraction of

true smooths before the rest of smooths can be obtained from the partials. Similarly,

they help less the larger the factor base used for a particular number.
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In the double large prime variation, one uses the single large prime variation and

also tries to �nd relations that have two large primes between F and F

2

. These

are called partial-partial relations. Finding the partial-partials does require extra

time. After factoring out the factor base primes from a polynomial value, if the

remaining part is slightly larger than F

2

, then one can attempt to factor it to obtain

a partial-partial. However, it is possible that the remaining part is prime, in which

case the relation is probably not useful. Therefore, it is usually bene�cial to do a

quick pseudoprime test before attempting to factor it. The usefulness of the double

large prime variation also depends on the choice of the factor base. Many people

have reported that factoring large numbers with the double large prime variation is

at least twice as fast as factoring with just the single large prime variation.

In practice, one does not accept all partials and partial-partials that have primes

between F and F

2

. There will be a huge amount of these, and the relations with

the largest primes are unlikely to be useful. Therefore, many people choose a cuto�,

such as 128 � F , for the largest primes that will be accepted.

Our implementation did not include the double large prime variation for a few

reasons. The main reason is that it does not seem to help at all for numbers of the

size that we are factoring. It also makes it di�cult to predict the time to complete

a factorization. For example, Lenstra and Manasse observed that the number of

smooths obtained from combining partials and partial-partials may di�er greatly

when factoring two numbers of the same size with the same parameter settings [14].

This makes it very time consuming to �nd the optimal factor base size. We also

do not believe the double large prime variation will have much of an a�ect on our

conclusion, that siqs is about twice as fast as mpqs. One may argue that it causes

more time to be spent on the sieving stage (i.e. factoring the partial-partials), and

in order to optimize the ratio of sieving time to initialization time, a smaller M

should be used. This smallerM might have more of an impact on mpqs than it does
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have on siqs. However, for large numbers, any report of a possible useful relation is

very rare, so the amount of time on the sieving stage will increase by only a small

amount.

We do not show many results on how we determined good factor base sizes for

the numbers in our tables. Some of our determination of factor bases was based on

experience from previous factorizations, which have not all been recorded. However,

we do show two tables that indicate the accuracy of our choices for a 70 and an 80

digit number. We believe the factor bases we have chosen are near optimal for the

single large prime variation. If the double large prime variation is used, then it is

likely that a smaller factor base is better.

It has been noted [1] that redundant relations are occasionally obtained with

siqs. By \redundant relation" we mean either a duplicate relation, or one relation

that is easily derived from another. For example, a relation that is a perfect square

times another is redundant. We have observed that redundant relations occur most

often when the leading coe�cients of two polynomials have all except one prime in

common. Therefore, we programmed our siqs so that the leading coe�cients of any

two of our polynomials will di�er by at least 2 primes. This greatly reduced the

redundancy. For all complete factorizations that we did, the number of redundant

relations was less than 1% of the total number of smooths plus number of matches

obtained.

Our tables are in appendix D. They present a small portion of experiments we

did.

2

We expect that this should be enough to convince the reader of the results that

we believe to be true. We have done a lot more experimenting with mpqs parameters

than siqs parameters. The lack of e�ort to determine the best siqs parameters was

due to the fact that usually our �rst or second siqs timing was about twice as

fast as the best mpqs timings. Thus, our data almost always suggests siqs is at

2

Contact the author for a complete list of all timings and the numbers we factored.
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least twice as fast as mpqs. We also chose F in away that seemed to optimize the

mpqs performance. This same value of F may not necessarily optimize the siqs

performance. In section 3.5, we explain why the optimal mpqs F is probably too

large for siqs. However, choosing the factor base slightly too large generally does not

make much of a di�erence in timings, so to be fair, this probably does not change

the results very much.

It is not necessary to generate enough data to factor a number to know about how

long it will take to get that data (see next section). So our tables contain the amount

of time it took to get a fraction of the necessary relations. This fraction should be

enough so that one can, with small error, predict the amount of time necessary to

completely factor the number. Some complete factorizations were done, however,

and these are reported (section 3.1 and section E).

Our timings were done using a timing command provided by the operating system

of our workstations. Experienced programmers will realize that such timers are often

inconsistent: running the same program twice may give two very di�erent timings,

even though they did the exact same operations. We were fortunate that our timer

was quite consistent. Most of the repeated timings that we did di�ered by less than

2% of each other. Our tables contain the average time per experiment when multiple

timings were performed.

For parameter choices which were clearly far from optimal, we have inserted `n.a.'

in the tables which means that the data is not available. The `f.b.' is an abbreviation

for factor base.

3.1 60 digit numbers

Our �rst 60 digit number is a cofactor of 3

131

+ 1, and the next two were generated

as a product of two randomly chosen 30 digit primes. All siqs timings for 60 digit
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numbers had 7 primes dividing the leading coe�cients, selected anywhere from the

170th prime in the factor base to the 380th. We used F = 60,000 for the upper bound

for factor base primes. This value was determined from much experimentation in

the past, and it is consistent with Silverman's choice [25].

Table D.1 (in appendix D) shows our experiments with di�erent values for

BLOCKSIZE for our �rst 60 digit number. We �xed M = 600,000 and ran our

mpqs program until we had 100 smooth relations. The best timings occurred with

BLOCKSIZE values in the range of 100,000 to 200,000.

Table D.2 summarizes the amount of time our siqs and mpqs programs spent

to get at least 100 smooths for the �rst 60 digit number using BLOCKSIZE =

100,000. For this number, the factor base had 3,101 primes, so the amount of

smooths we are getting is about 3:2% of the number of primes in the factor base. A

higher number of smooths would have given us a better view of which parameters

are best. However, this is su�cient enough to illustrate at least one point.

Notice that the best mpqs time of 2 minutes and 26 seconds occurred when M

= 600,000, where it obtained an average of � :685 smooths per second. For this

M , the siqs time is 1 minute and 52 seconds, only slightly better than the mpqs

timing. But the di�erence is that using a smaller M makes the mpqs timing worse

and the siqs timing better. The mpqs timing with M = 100,000 is more than twice

as bad as the mpqs timing with M = 600,000. This is because when a value of

M is chosen too small, mpqs will be spending a large percentage of its time on the

initialization stage, and a small percentage of time actually searching for the good

data. Since siqs performs the initialization so fast on average, we are able to get

a much better time using a smaller M . The best siqs timing occured when M =

100,000, averaging � 1:507 smooths per second. Dividing this rate by the best mpqs

rate of :685 smooths per second, we see that the siqs performance was about 2:20

times the speed of the mpqs performance.
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From the small amount of data in Table D.2 we can predict how much time it

will take to get enough data to factor the number. It would be a good guess to

say that we need about 1550 smooths (half the number of factor base primes) and

then the remaining smooths can be obtained from the partial relations. However,

to be absolutely sure we succeed, we decided to go a little beyond this, to 1700

smooths. At a rate of 1:507 smooths per second for the siqs timing with M =

100,000, the expected amount of time is about 1700=1:507 seconds � 18:80 minutes.

Table D.3 shows the actual time to get at least 1700 smooths with these paramters

was 20 minutes and 45 seconds. The error of about 10% could have been reduced by

getting more smooths in our original experiment. The prediction for mpqs with M

= 600,000 is 1700=:685 seconds � 41:36 minutes. The actual time was 40 minutes

and 33 seconds.

We mentioned in the previous section that the siqs algorithm can generate a

small amount of redundant data. For the last siqs timing in Table D.3, we had 1709

smooths and 19868 partials (accepting partials up to size 128�F ). Only one of the

smooths was redundant. The partials combined for 2093 matches, of which 26 were

redundant. So we had 3775 true complete relations, which was nearly 700 more than

we needed.

For our second 60 digit number, we did another cache experiment and again

arrived at the conclusion that the optimal BLOCKSIZE is somewhere between

100,000 and 200,000. For brevity, we have omitted this table. Table D.4 contains

the timings to get at least 100 smooths for the second 60 digit number, this time using

BLOCKSIZE = 150,000. The best mpqs timings occurred with M = 1,200,000

and M = 900,000 both at a rate of � :6 smooths per second. The best siqs timing

was with M = 150,000 at a rate of � 1:085 smooths per second. The ratio of times

shows that siqs was about 1:80 times faster than mpqs. Perhaps a better siqs rate

could have been accomplished with a smaller M .
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The most emphasis should be put on D.5, which contains the timings for the

third 60 digit number. Here we got at least 300 smooths for all experiments. Table

D.5 contains a column for BLOCKSIZE, which we did not keep constant for all

timings. With M = 1,200,000 we achieved the best mpqs rate of � :476 smooths

per second. Compare that to the rate of :997 smooths per second for siqs with M =

100,000. This is 2:09 times faster than the mpqs timing. Table D.5 also illustrates

how the times can blow up if an M is chosen too large or too small with mpqs.

For our timings, we found the optimal values of M in our implementations to

be about 100,000 (or perhaps smaller) for siqs and somewhere between 600,000 and

1,200,000 for mpqs.

3.2 70 digit numbers

All three of our 70 digit numbers were a product of two thirty �ve digit primes. In

all experiments with siqs, the leading coe�cients had 8 prime divisors. These primes

were selected anywhere from the 180th to the 380th prime in the factor base.

Our �rst concern in factoring 70 digit numbers was �nding a good factor base

size for mpqs. Let us assume for the moment that we are not using the large prime

variation. Then one could proceed by �rst choosing an initial guess for a value

of F , then �nding out what the best M is for that factor base size, and �nally

experimentally determine the rate that smooths are being obtained to make an

accurate prediction on the expected amount of time to factor the number. Upon

doing this for several values of F , one can empirically determine which is best. This

is what we did in Table D.6 for our �rst 70 digit number.

Now, how do large primes a�ect our results? We mentioned earlier that the large

prime variation is less useful for large factor base sizes and more useful for small ones.

We have looked at a few examples for 60 and 70 digit numbers to determine just how



24

much the large primes help. In our examples, we kept the cuto� for large primes

at some constant times F . In all cases, a good value of F required approximately

half as many smooths as primes in the factor base and then the remaining residues

were obtained from the partial relations. Then, upon doubling the value of F and

attempting to refactor the same number with the larger factor base, it required

about an extra 5% higher ratio of smooths to factor base primes before the rest of

the smooths were obtained from the partials. For example, suppose that we chose a

good value for F and for it, we needed a number of smooths equal to :47 times the

size of the factor base before we had enough relations to factor the number. Then,

if we re-ran the program using a value of F twice as big, it would be be necessary to

get about :52 times the size of the new factor base smooths before we could factor

the number.

With this in mind, we can make a decent guess at how much the large primes

help us for various factor base sizes. In our guesses, we always took the smaller

factor base when timings were close. From Table D.6, we see that the best time

occurred with F = 500,000, but that was not much better than the time with F

= 350,000. Based on this and some experiments with other 70 digit numbers, we

chose F = 350,000 for the 70 digit number tables in this paper. All tables contain

a column for BLOCKSIZE.

Table D.7 contains the timings to get at least 1,200 smooths for the �rst 70

digit number. The best mpqs timing occurs when M = 600,000 and BLOCKSIZE

= 200,000. Notice that this is better than using the same value of M but with

BLOCKSIZE = 150,000 or BLOCKSIZE = 300,000. The point is that we had

to increase the BLOCKSIZE to optimize our factoring when we went to larger

numbers. Comparing this mpqs timing to the siqs timing with M = 200,000, we see

that siqs was about 2:15 times as fast. Since we did only two siqs experiments it

may be even faster than this.
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In Table D.8 for the second 70 digit number, the siqs timing with M = 200,000

was 2:16 times faster than the best mpqs timing, with M = 3,600,000.

In Table D.9 for the third 70 digit number, we ran our programs until we got �

1,500 smooths. The best siqs timing was 1:97 times faster than the best from mpqs.

It is interesting to compare these timings with those from Table D.8. Although the

two numbers are the same size in digits, we got smooths for the third 70 digit at

a rate of nearly four times as fast as we did for the second. This is mainly due to

di�erences in the factor base. In section 3.7 we give an explanation for this. We

probably could have factored the second 70 digit number much faster if we had used

a multiplier [21].

Our results indicate that siqs is about twice as fast as mpqs for 70 digit numbers.

For mpqs, our optimal M seems to be in the range of 3,000,000 to 6,000,000, and

for siqs it seems to be about 200,000.

3.3 80 digit numbers

All three of our 80 digit numbers were generated as a product of two 40 digit primes.

In all experiments with siqs, the leading coe�cient had 10 prime divisors, selected

anywhere from the 170th to the 370th prime in the factor base. Table D.10 shows

our experiments with factor base sizes for this �rst 80 digit number. Based on these

timings and some timings from other 80 digit numbers, we chose F = 900,000 in all

three tables.

We leave it to the reader to verify that siqs was 2:11, 2:14, and 2:21 times faster

than mpqs for the �rst, second, and third numbers respectively (see Tables D.11,

D.12, and D.13).

The careful observer might notice that in these tables, the value of F is larger than

twice the value of M for the best siqs timings. This implies that some primes may



26

not land in the sieve array at all. The natural question to ask is why bother sieving

with those primes if it takes time to deal with them and often it is to no bene�t at

all? Let us give a philosophical answer without going into any mathematical details.

The important thing is to consider the amortized cost of operations. A prime may

miss some sieve intervals completely, but it will also hit many sieve intervals, and for

these it will contribute a lot to the sieve array. This is not an entirely new concept

to experienced programmers. Even in mpqs we see examples of this: when the sieve

interval is split into blocks to optimize the use of cache memory, not all primes are

going to land in every block. But it is necessary to do the extra work of sieving with

these primes to optimize the speed of the program.

Our results suggest that siqs is about twice as fast as mpqs for 80 digit numbers.

For mpqs, we got our best timings with M between 6,000,000 and 9,000,000. For

siqs, M = 300,000 seems to be a good choice.

3.4 Importance of initialization

Although we suggested values for M for our mpqs program, one should realize that

the optimal value is strongly dependent upon implementation. Faster initialization

means faster factoring because it allows using a smaller M e�ciently.

When we showed the timings above to Arjen Lenstra, who probably has more

experience with mpqs than anyone else in the world, he questioned the e�ciency

of our mpqs initialization stage routines. We gave him a copy of our program, and

he timed our initialization against his, and found his to be signi�cantly faster. He

then generously gave us a copy of his mpqs program so we could improve on our

own. His mpqs initialization used several nontrivial tricks, taking advantage of the

fact that the primes in the factor base are less than 26 bits for the numbers we are

factoring. We then incorporated his initialization routines into our mpqs program.
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After redoing several timings, we found the best mpqs timings with his initialization

routines were 5 to 10% better than the best mpqs timings with our original program.

This only changes our \factor of 2 speedup" in a minor way. Note too that some of

his tricks could also be applied to our siqs program.

It is interesting to compare the amount of time our (original) mpqs and siqs

programs spend initializing polynomials. Referring to the third 70 digit number in

Table D.9 with M = 3,200,000, a total of 9 minutes was spent on initialization. Of

the 9 minutes, 50 seconds was spent on generating the coe�cients of the polynomials

alone. The total number of polynomials generated was 568. Suppose we wanted to

use the same M to factor that number with siqs and let us ask how much time it

would take to do the initialization.

3

Since our siqs program selects 8 prime divisors

for the leading coe�cient, it generates 2

7

polynomials at a time. Therefore only 5

choices for the leading coe�cient are needed for siqs to generate at least the same

number of polynomials. The amount of time to generate these coe�cients and to do

the preprocessing stages is only 14 seconds!

3.5 Remarks on factor base sizes

The optimal mpqs F is always too large for siqs. We illustrate this by example for

numbers N � 10

70

. With mpqs we found the optimal parameters to be F � 350,000

and M � 4,000,000. For siqs we used M � 200,000 and remarked that the factor

base size of 350,000 was actually too large.

The polynomials that we are sieving on have residues of size M

p

N after a is

factored out. For mpqs this is � 4 � 10

41

and for siqs it is � 2 � 10

40

. Since the

choice of optimal factor base depends completely on the size of the residues, we can

extrapolate to approximate the optimal factor base size for siqs. First note that

3

Of course, in practice we would use a much smallerM , but the point of this comparison

is to show how much faster siqs initializes.
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factoring a number equal to about 2:5 � 10

67

using M = 4,000,000 with mpqs will

yield the same size residues as those that siqs obtains on 70 digit numbers. Thus,

the best factor base size for factoring a 70 digit number with siqs is about the same

as the best factor base size for factoring numbers near 2:5 � 10

67

with mpqs.

Asymptotically, the optimal choice for the upper bound for factor base primes is

F = e

(

1

2

+o(1))

p

logN log logN

. Ignoring the o(1), we can approximate the ratio of choices

for F with N = 2:5 � 10

67

to F with N = 10

70

. This turns out to be about 0:725,

implying that the optimal siqs F for factoring 70 digit numbers is 0:725�350,000 �

250,000.

In the above argument we assumed that the best mpqs M for N = 2:5 � 10

67

is about the same as the M for N = 10

70

. There may be a slight error in this

assumption, since M should decrease as N does. If we assume the best M decreases

to as little as 2,000,000, then the calculations tell us that the best siqs F is� 275,000.

Therefore it is reasonable to assume F should be somewhere between 250,000 and

275,000. Again, we repeat that choosing F slightly too large usually does not make

a big di�erence in timings. An example is given in the next section.

3.6 Some complete factorizations

For the 70 and 80 digit numbers, we also generated data to completely factor the

numbers. Tables E.1 through E.6 in appendix E summarize our results.

For each number we would sieve until we had about half as many smooths as

primes in the factor base. We would then check to see if that was enough data to

factor the number, and if it was not, we would continue sieving a little more until

we could factor the number. Some of the numbers could have been factored a little

sooner than the times listed because of the high numbers of matches obtained from

partials.
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In all of these timings, the number of partials and matches for mpqs was larger

than that for siqs. Part of the reason for this is because of implementation: since the

residues are all size M

p

N , it is natural to set the threshold for detecting smooth or

partial relations to be some function of M

p

N . Since the mpqs M is larger than the

siqs M , we will detect more partials when using mpqs. Also, there are not as many

matches with siqs since the factor base size we were using was not optimal for siqs.

Using a smaller F would have balanced everything out better. Take for example the

third 70 digit number with siqs (Table E.3). We initially tried to factor the number

after we had 7,500 smooths (almost half the factor base size), but were unsuccessful

because we had only 6,699 matches among the partials, and the combination of the

14199 relations was not enough to �nd a dependency in the matrix. We then sieved

until we had at least an extra 200 smooths, which was enough to factor the number.

We later tried factoring this using F = 275,000. The number of primes in the factor

base was 12,172, so we sieved until we had 6,014 smooths (a little less than half the

factor base size). When sieving was completed, the number of partials was 68,009

which combined to 6,168 matches, allowing us to factor the number. The time for

this was 111 minutes and 31 seconds. Notice that with the smaller factor base size,

we had more matches than smooths.

3.7 Differences in factor bases

Tables E.2 and E.3 are examples on how two number of the same size can di�er by

a factor of 3 or 4 in the amount of time necessary to factor them with the quadratic

sieve. It is clear that the di�erence in timings comes from the factor bases. The

second 70 digit number only has 6 primes less than 100 in its factor base: 2, 19, 43,

47, 61, and 83. The third 70 digit number has 13 primes less than 100: 2, 3, 5, 7,

19, 23, 31, 37, 43, 47, 61, 71, and 83.
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It would be nice to have an estimate of the di�erences in timings which depends

upon the factor base. We suggest using

e

p

logN

0

log logN

0

(3.1)

where

N

0

=

0

@

e

log

p

N+logF�

P

p2f.b.

E(p)

1

A

2

(3.2)

and E(p) is the expected contribution of prime p to a location of the sieve array.

That is,

E(p) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(2 log p)=(p � 1) if p odd prime

1

2

log 2 if p = 2 and N � 3 mod 4

log 2 if p = 2 and N � 5 mod 8

2 log 2 if p = 2 and N � 1 mod 8

The idea behind formulas (3.1) and (3.2) is that when the factor base is rich in

small primes, it is like sieving on smaller residues since, after sieving, the expected

sizes of the remaining residues are smaller than those from an \average" factor

base. We expect that on average, the

P

p2f.b.

E(p) in (3.2) will be about logF . So

the di�erence logF �

P

p2f.b.

E(p) represents the expected amount that the factor base

primes contribute below or above the average. The log

p

N is the size of the residues

that we are sieving on. So the entire exponent, log

p

N+log F�

P

p2f.b.

E(p), should be

thought of as an adjusted residue size, and N

0

as an adjusted value of N . Equation

(3.1) measures the expected time for the adjusted N (ignoring the o(1)).

The way to use this formula is to compute the values for two di�erent N of about

the same size, and then compute the ratios of the values to get the expected ratios

of running times. For the second 70 digit number, the

P

p2f.b.

E(p) is � 9:4, and for

the third, � 13:9. The values of (3.1) are 4:71 � 10

12

and 1:83 � 10

12

respectively.

The ratio is 2:57, meaning that we expect the amount of time to factor the second

to be about 2:57 times the amount of time to factor the third. We have two possible
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explanations for di�erence between what our formula predicts and what was actually

observed. First note that in Table E.2, we could have stopped sieving earlier, due

to the large number of matches obtained. Second, we used a slightly larger value of

M for the second 70 digit number.

Equation (3.2) can be written more simply as

N

0

= Ne

2(logF�

P

p2f.b.

E(p))

:

We call the value of e

2(logF�

P

p2f.b.

E(p))

the adjustment factor. Its value is not very

sensitive to the choice for F . This means, for computational purposes one need not

compute the entire

P

p2f.b.

E(p), but instead it will generally be su�cient to sum up to

some �xed bound, like 10,000.

3.8 The factorization of a 116 digit number

We have used siqs to be the �rst to factor about a dozen numbers for the Cunningham

project [3]. The largest was a 116 digit divisor of 2

481

+2

241

+1, completed on June

15, 1996. This number was on the \Most Wanted List" for the project.

The number we factored was (on the following two lines)

9535455903208375257494587744656958072003190386397547282545n

4205845036702088404124447972746088891967876336741550386837

which is the product of the 36 digit prime

258190389365279446113985999067417377

and an 81 digit prime. This is the record for the largest quadratic sieve factorization

for the Cunningham project. For general purpose factoring algorithms like qs, the

record is measured by the length of the number factored.
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There have been three other 116 digit quadratic sieve factorizations for the Cun-

ningham project, but ours has the highest most signi�cant digit. Due to the poor

factor base, we had to use a multiplier of 29, which means that we were actually

factoring a 118 digit number. Compared to other factorizations, we had a small

amount of computing power. We also did not use the double large prime variation.

The factorization took approximately 11 workstations and 10 months real time

of sieving, although a couple of these workstations were available for only a small

fraction of the total sieving time. Eight of the workstations were Sun SPARC 5's

(described earlier). The other three were a SPARC 2, a SPARCstation 1000, and a

SPARC 20. However, these three had other heavy jobs to run (they were being used

as servers), which prevented them from performing better than most of the SPARC

5's. The SPARC 5's were also being used by other graduate students and professors

for their research. The most productive computers got an average of about 300

smooth relations per week. For the factor base size of 196,701 primes, we needed

about 90,000 smooths and the rest of the smooths came from partial relations.

Based on the �gure of 300 smooths per week and the High MIPS rating of 39.0,

the total cpu time spent was 224 MIPS years. This is a pessimistic rating for three

reasons: it uses the highest MIPS rating of the computer, we actually factored a 118

digit number, and we did not use the double large prime variation.

We can extrapolate from this to determine about how much CPU time is

necessary to factor a 129 digit number, and to compare that with the RSA-

129 digit number, which took about 5,000 MIPS years. The ratio of times

to factor a 129 digit number to factoring a 116 digit number is approximately

e

p

log 10

129

log log10

129

=e

p

log10

116

log log10

116

� 12. So we could factor a 129 digit number

in about 12 � 224 � 2,700 MIPS years. And, if we used the double large prime

variation (which was used in RSA-129), then perhaps this reduces down to about

1,350 MIPS years.
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Comparisons like the one just made are not always trustworthy since, as we

have seen (section 3.2), factoring a number with any version of qs may take 3 or

4 times longer than another number of the same size. However, bringing in the

adjustment factor (see previous section) may give us a better idea on how accurate

our comparison is. Without the multiplier, the adjustment factor for our 116 digit

number is � 38:5, which is larger than the RSA-129 adjustment factor of � 7:04.

The N

0

in (3.2) for our 116 digit number is 118 digits, while the N

0

for RSA-129 is

still 129 digits. We can interpret this to mean that without multipliers, our 116 digit

number is about as di�cult to factor as a typical 118 digit number, while RSA-129

remains as di�cult as a typical 129 digit number. With the multiplier of 29, the

new adjustment factor for our 116 digit number is � :056 and the N

0

is 117 digits.

The RSA-129 multiplier was 5, which makes its new adjustment factor � :287 and

its new N

0

is still 129 digits. Thus, the CPU time comparison above seems to be

pessimistic towards our siqs implementation.

We hope this is a convincing argument on the bene�ts of siqs over the regular

mpqs. On the other hand, however, we should mention that some of the computers

in the RSA-129 factorization had very small amounts of memory, and because of

this, they had to run a suboptimal version of the mpqs code. So perhaps the \5000

mips years" is pessimistic towards the RSA-129 factorization. We also should draw

attention to the comments about how processor speed doesn't always correlate well

with memory access speed, and therefore MIPS years is not the ideal rating for

sieving algorithms (explained in [2]).



Chapter 4

The matrix problem

This chapter describes the matrix problem that must be solved in the qs algorithm,

as well as to show past and possible future methods in solving it. As explained in

the introduction and chapter 2, this is a very important part of qs. A similar matrix

problem must be solved for nfs.

Let's start with an example. The following are smooth relations for the number

N=14,137.

119

2

� 24 = 2

3

� 3 modN

121

2

� 504 = 2

3

� 3

2

� 7 modN

131

2

� 3024 = 2

4

� 3

3

� 7 modN

149

2

� 8064 = 2

7

� 3

2

� 7 modN

151

2

� 8664 = 2

3

� 3 � 19

2

modN

The second column of numbers contains the least positive residue of the �rst

column mod N , and the third column contains the factorization of the second

column. If we multiply the left hand sides of the �rst, third, and fourth relations

together, that will be congruent to the product of the right hand sides. Writing it in

terms of factorization, we have 119

2

� 131

2

� 149

2

� 2

14

� 3

6

� 7

2

mod N , which is

the same as (119 � 131 � 149)

2

� (2

7

� 3

3

� 7)

2

mod N . Thus, we found a relation

of the form X

2

� Y

2

mod N .

Multiplying relations together corresponds to adding exponents of the prime fac-

tors, and searching for a perfect square amounts to �nding where all exponents sum

34
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to even numbers. So we only care about the exponents in the prime factorizations,

and in particular whether they are even or odd. This suggests creating, for each

relation, an exponent vector that has length equal to the number of primes in the

factor base. The jth entry in that vector represents the exponent reduced mod2 to

which the jth prime in the factor base divides the right hand side of that relation.

The 5 exponent vectors for the relations above are

primes v

1

v

2

v

3

v

4

v

5

2 1 1 0 1 1

3 1 0 1 0 1

7 0 1 1 1 0

19 0 0 0 0 0

Now the condition that the product of the �rst, third, and fourth relations is

a perfect square is the same as saying v

1

+ v

3

+ v

4

contains all zero entries mod2.

Equivalently, if we combine these �ve column vectors into a matrix B, then B times

the vector (

1 0 1 1 0

)

T

is the zero vector, working over GF (2). Hence, the

problem of �nding a perfect square is reduced to �nding a (nontrivial) null space

vector in a matrix. Each null space vector should give us at least a 50% chance

of success in factoring, so we can be fairly sure to succeed if we �nd about 10

independent null space vectors. Notice that there are other null space vectors in the

matrix above, such as (

0 1 0 1 0

)

T

.

Each relation will have few prime factors, so each column vector of B will have

very few nonzero entries, implying that B is very sparse. However, the top rows

of B, corresponding to the smallest primes in the factor base, are somewhat dense.

Most of the nonzero entries are at the top of the matrix. By the density of the

matrix we will mean the average number of nonzero entries per column.
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4.1 Historical solutions

When qs was �rst published, it was thought that the matrix stage would dominate

the running time. In order to equate the asymptotic running times of the sieving

and the matrix stages, it was necessary to choose a suboptimal F [19]. However,

researchers eventually found ways to adapt faster matrix methods to the factoring

problem, which allowed the use of the optimal F for the sieving stage. With this F ,

solving the matrix should take about take about as much time (asymptotically) as

sieving (see appendix A). However this has never happened. In practice, the time

spent on the matrix stage has always been a very small fraction of the sieving time,

even when direct methods have been used. So why is the matrix stage a problem?

The answer is because of the limited memory available on a single computer, and

the lack of clever ways of parallelizing the methods. In this section we outline the

past and present methods for solving the matrix.

Initially, Gaussian elimination was used. For an n by n matrix,

1

this takes time

�(n

3

). Gaussian elimination can be implemented very e�ciently when working over

GF (2). Each entry in the matrix requires only one bit to store, so 32 entries can be

stored in one computer word, assuming the computer has 32 bit words. Moreover,

adding elements over GF (2) is the same as doing exclusive or's (XOR's) of the bits.

Since computers can perform XOR's between two words in the same amount of time

they can between two bits, a factor of 32 speedup can be obtained over a naive

implementation. Unfortunately, the memory requirements are too much. A matrix

with 6 � 10

4

rows and columns would require 6 � 10

4

� 6 � 10

4

=8 bytes of memory for

storage, which is 450 megabytes. This is a relatively large amount of memory to

store a small factoring matrix.

1

Factoring matrices are usually not square, but very close. We will refer to n by n

matrices throughout this section.
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A better method, known as structured Gaussian elimination, was presented in

[18] [22]. Structured Gauss takes the large sparse matrix and reduces it to a smaller,

dense matrix in an intelligent way. The smaller matrix, typically about one fourth

or one third the size of the original matrix [11] [12], can then be processed by regular

Gaussian elimination. Arjen Lenstra has used this method quite a bit, and has pro-

grammed it on a full size MasPar MP-1 massively parallel computer [12]. This imple-

mentation was used to solve the RSA-129 matrix [2]. The 524,339�569,466 matrix

of density � 47 was reduced to a 188,614�188,160 dense matrix which required over

4 gigabytes to store on disk. The dense matrix was solved in 45 hours.

Clearly structured Gauss requires too much disk space and would not be very fast

for solving matrices with over a million rows and columns. So attention has turned

to iterative methods. Iterative methods create a sequence of vectors by multiplying

the matrix by previous vectors in the sequence. After a certain number of steps,

some linear combination of the vectors can be used to solve the system of equations.

For an n by n matrix of density d, typical running times are �(dn

2

). In our case d

is very small, so the running times are essentially �(n

2

). In addition, the memory

required to store the matrix is �(dn) since it is only necessary to store the indices of

the nonzero entries. This is much less than Gaussian elimination.

In [18], Odlyzko showed how to adapt the conjugate gradient method to �nite

�elds. Around the same time, Douglas Wiedemann invented an iterative method

that was speci�cally designed for solving systems of equations over �nite �elds [26].

Wiedemann's method was based on �nding the minimal polynomial of B using the

Berlekamp-Massey algorithm [16]. His algorithm required about 3n multiplies of B

by vectors. Although it was quite exciting, nobody had programmed it and used it

for large factoring matrices. So it was not clear that it would beat structured Gauss

in practice.
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Later, LaMacchia and Odlyzko experimented with the Lanczos method [11].

Lanczos was designed to work over the �eld of real numbers. They showed how

to apply the same formulas over �nite �elds with a high probability of success. We

will comment on their ideas in the next two sections.

Although these methods beat structured Gauss asymptotically, they do not get

the factor of 32 speedup that Gaussian elimination obtains by packing 32 �eld ele-

ments into a word when working over GF (2). But why should we not be able to get

this speedup with the iterative methods also? Rather than multiplying the matrix

by one vector at a time, we could try to multiply it by 32 vectors at a time by storing

32 vectors into an array of words. The jth word would contain the jth entries from

each of the 32 vectors. Such a vector is called a block vector, and multiplying a

matrix by it can be done in the same time as multiplying a matrix by a single

vector. So the question is, can the iterative methods be generalized to work with

block vectors rather than single vectors so that 32 vectors can be processed at one

time? This would give these algorithms the factor of 32 speedup similar to what we

got with Gaussian elimination.

Don Coppersmith showed how to do this �rst with his block Lanczos algo-

rithm [6]. However, his ideas are somewhat complicated and hard to program. He

next developed a block Wiedemann algorithm which is not so di�cult to program

[7]. Later, Peter Montgomery developed his own block Lanczos algorithm [17] and

programmed it to solve some nfs matrices. One of these had 1,284,719 rows and

1,294,861 columns. The fact that he was able to solve a matrix this big not only

put a spotlight on his algorithm, but also was one of the �nal links in making the

nfs practical.

For factoring matrices, both block Lanczos methods require about 2n=32 matrix-

block vector multiplies, while the block Wiedemann does 3n=32. It is possible to

do the block Wiedemann with less multiplies but then other parts of the algorithm
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become more expensive. Montgomery's block Lanczos requires less block vector

inner products and less multiplies of block vectors by 32 � 32 matrix blocks than

Coppersmith's, so it should be faster. In [5], Coppersmith's block Wiedemann was

compared to Montgomery's block Lanczos, and in all timings Montgomery's algo-

rithmwas faster. They also programmed these algorithms on the MasPar MP-1 mas-

sively parallel computer. The parallel block Lanczos was used to solve a 1,472,607

by 1,475,898 nfs matrix in 2:5 CPU days. This was part of a record nfs factorization,

a 119 digit partition number (reported in [10]). It was beat two years later by the

factorization of RSA-130 [8], which is the record at the time of writing. The � 3:5

million rows and columns RSA-130 matrix was also solved by block Lanczos, but

on a Cray C90 supercomputer. Today, most large factorization matrices are being

solved by Montgomery's block Lanczos method.

As the matrices get larger, it is becoming more di�cult to �nd a single machine

to handle them. It will eventually become necessary to use networks of workstations

to work together on solving a single system of equations. In the next two sections we

describe Lanczos and ways to apply Lanczos to factoring matrices. We then give a

simple method of parallelizing the algorithm on a network of workstations. The main

purpose of our method was to test the feasibility of distributing the computation for

this algorithm. Our method was somewhat successful, but improvements need to be

made to handle large matrices more e�ciently. Some improvements and other ideas

for parallelizing iterative methods are discussed in the �nal section.

4.2 Lanczos method

Suppose A is a symmetric, positive de�nite n�nmatrix with real number entries. To

solve Ax = b for b 2 R

n

, standard Lanczos generates a sequence of vectors w

0

; w

1

; : : :

by
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w

0

= b

w

i

= Aw

i�1

�

i�1

X

j=0

c

i;j

w

j

for i > 0

where the real numbers c

i;j

are chosen so that the vectors are orthogonal with respect

to A: w

T

j

Aw

i

= 0 for i 6= j. We can determine the c

i;j

by an inductive argument.

Assume by induction that w

T

j

Aw

k

= 0 for j; k < i, j 6= k. Then w

T

j

Aw

i

=

w

T

j

A

2

w

i�1

� c

i;j

w

T

j

Aw

j

. We want this to be 0, which is accomplished by taking

c

i;j

=

w

T

j

A

2

w

i�1

w

T

j

Aw

j

:

There is no division by 0 here because of the positive de�nite condition. By the

symmetry of A, we also have w

T

i

Aw

j

= 0.

Eventually one of the w

i

will be zero. To see this, note that n + 1 vectors in

R

n

must be linearly dependent. So after n iterations, there will be real numbers

a

0

; a

1

; : : : ; a

n

(not all zero) such that

P

n

j=0

a

j

w

j

= 0. Let a

m

be the last nonzero

number (i.e. a

m

is not zero, but a

j

is zero for j > m). Then 0 = w

T

m

A

P

n

j=0

a

j

w

j

=

P

n

j=0

a

j

w

T

m

Aw

j

= a

m

w

T

m

Aw

m

by the orthogonality condition. By the positive de�-

niteness of A, w

T

m

Aw

m

> 0 if w

m

6= 0. The previous two sentences imply that w

m

must be equal to zero, as we asserted.

The iteration is complete when the zero vector is found. Let

x =

m�1

X

j=0

w

T

j

b

w

T

j

Aw

j

w

j

:

By construction, w

T

k

Ax = w

T

k

b for 0 � k � m � 1, and so w

T

k

(Ax � b) = 0.

Equivalently, if we multiply the transpose of any vector in < w

0

; : : : ; w

m�1

> by

Ax � b, we get 0. We claim Ax = b. Note that Aw

k

= w

k+1

+

P

k

j=0

c

k+1;j

w

j

, so

each Aw

k

is in < w

0

; : : : ; w

m�1

>. Since b = w

0

and Ax is a linear combination

of the Aw

k

's, we know that Ax � b is also in < w

0

; : : : ; w

m�1

>. Thus, there are
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real numbers d

0

; : : : ; d

m�1

such that Ax� b =

P

m�1

j=0

d

j

w

j

. Multiplying through by

w

T

k

A, we get w

T

k

A(Ax� b) = d

k

w

T

k

Aw

k

. On the other hand, w

T

k

A = (Aw

k

)

T

is in

< w

0

; : : : ; w

m�1

>, so by the remarks above, w

T

k

A(Ax� b) = 0. Hence, d

k

= 0 for

all 0 � k � m� 1, showing that Ax = b.

The great thing about this algorithm is that the c

i;j

are zero for all j < i� 2. To

see this, note that the numerator of c

i;j

is

w

T

j

A

2

w

i�1

= (Aw

j

)

T

Aw

i�1

=

0

@

w

j+1

+

j

X

k=0

c

j+1;k

w

k

1

A

T

Aw

i�1

= 0:

Thus, the Lanczos iteration simpli�es to

w

i

= Aw

i�1

� c

i;i�1

w

i�1

� c

i;i�2

w

i�2

for i � 2

where

c

i;i�1

=

(Aw

i�1

)

T

(Aw

i�1

)

w

T

i�1

(Aw

i�1

)

and c

i;i�2

=

(Aw

i�2

)

T

(Aw

i�1

)

w

T

i�2

(Aw

i�2

)

For each iteration, A must be multiplied by a vector only once since the value of

Aw

i�2

is known from the previous iteration. Solving the system by standard Lanczos

requires no more than n multiplies of A by a vector and 3n inner products. The

algorithm is particularly suited for sparse matrices. If A averages d nonzero entries

per column, the running time is order dn

2

.

4.3 Applying Lanczos to factoring matrices

Standard Lanczos cannot be directly applied to our factoring matrices. Our matrices

are neither symmetric nor positive de�nite. The symmetry can easily be overcome.

If we call our factoring matrix B, then A = B

T

B is a symmetric matrix. So we run

Lanczos to solve (B

T

B)x = B

T

b, and a solution to this will likely be a solution to

Bx = b [18]. Note though that A is never computed explicitly. Instead, when we

are required to multiply A by w

i�1

, we �rst multiply B by w

i�1

and then B

T

by the
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resulting product. This doubles the number of matrix-vector multiplies which is a

small price to pay.

The more serious problem is the non-positive de�niteness. About half of the

vectors we are working with will have the property w

T

j

Aw

j

= 0 (recall we need

to solve the system over the �eld GF (2)). This would cause a division by zero in

computing the c

i;j

. Odlyzko's solution to this is to work over the �eld GF (2

r

) where

r is selected large enough so the probability of getting c

i;j

= 0 is very small [18] [11].

Assuming r � 32, each �eld element can be stored in a computer word. Thus, the

matrix-vector multiply over this �eld can be done in the same amount of time as

doing it over GF (2).

Since we are looking for null space vectors, we want to try not to get the trivial

one. If we try to use Lanczos with b = 0, it will immediately terminate giving only

x = 0 as the solution. A way around this is to choose a random vector y and let

b = By. Then run Lanczos to get a solution to Bx = b, so that x� y will be a null

space vector.

An alternate solution is to use one of the block Lanczos algorithms.

In the next section we explain a simple method of distributing the computation

for any iterative method that requires multiplying a matrix by a vector and then the

transpose of the matrix by the result. We tried it on Montgomery's block Lanczos

algorithm.

4.4 Parallel implementation of Lanczos

Most parallel computers are classi�ed as either SIMD or MIMD. SIMD machines

(single instruction multiple data) are those where the same instruction is fed to all

processors at the same time. Each processor has the option of executing or not

executing the instruction on its own data. MIMD machines (multiple instruction
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multiple data) are those for which each processor can execute its own instructions

on its own data independently of the other processors. MIMD machines give the

algorithm designer a lot more freedom, but tend to be more di�cult to program.

A parallel implementation of block Lanczos on a SIMD machine is described in

[5]. This was on a full size MasPar, having 16,384 processors each with 64K of

memory. The implementation could solve factoring matrices with up to around 2

million rows and columns in only a few days. But that was the limit. There was not

enough memory to hold signi�cantly larger matrices.

These memory limitations are the motivation for our present research. Today

people are spending only a few percent (often much less) of their time on the matrix

stages of factoring algorithms. Yet the problem with going on to factoring larger

numbers (say, 512 bits) seems troublesome mainly because of the matrix. If we had

a single, powerful computer with a very large memory all to ourselves, then a matrix

of 19 million rows and columns could be solved in perhaps a couple of months. Most

likely, the real time for the matrix stage would be much less than the real time for the

sieving, so a couple of months would not be too long to wait for the result. However,

it is unlikely that we could ever get access to a computer so big and powerful for

this length of time. Certainly the memory required for this job would take up most

of the memory of the computer, and therefore nobody else would be able to use it

until we were �nished.

So we need a new solution. Now the factoring problem is famous for using several

independent workstations together on factoring one number [13]. We can ask if it

is possible to do distribute the matrix problem in a similar manner. This seems

harder, mainly because it requires a lot more inter-processor communication.

But in our case, the amount of time necessary to solve the matrix is not the most

important issue. For algorithms like qs and nfs, the number of rows and columns

each grow with the square root of the running times, which is super-polynomial.
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While we are increasing the numbers of our computers to factor larger numbers, it is

foolish to hope to solve the larger matrices on only one single computer. To prepare

for future numbers, we need to have a way to solve the matrix without relying on

the memory available of one particular computer. Thus, the �rst question that we

should ask is, if we are willing to wait long enough, would we be able to solve the

system of equations? In other words, can we gather together some collection of

computers that we already have access to, and somehow make them work together

on the matrix problem?

The use of multiple workstations to solve a single problem is like having a MIMD

parallel computer. The computers work independently and synchronization must be

enforced by the progarmmer. Software packages are available to provide communi-

cation between the machines. We used the popular package PVM, which stands for

Parallel Virtual Machine.

Below we describe a parallel implementation of Montgomery's block Lanczos. We

refer the reader to [17] for a complete description of the algorithm. Block Lanczos

is similar to standard Lanczos, but generalizes the ideas to work with subspaces.

Each subspace will have a basis of up to 32 vectors, which are combined to form

a block vector. The iteration is done on these block vectors. It is not necessary

to have a complete understanding of the algorithm to understand our method of

parallelization. Our method also works for the standard Lanczos algorithm or any

iterative method that requires multiplying the matrix by a (block) vector, and the

transpose of the matrix by the result.

Our method was designed to be memory e�cient. There are certainly much faster

methods of parallelizing the algorithm if we are willing to duplicate large amounts

of data. But again, we do not want to have to rely on each workstation involved

having a large amount of memory.
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We parallelize this by designating one processor as the \master" and the others

as \slaves". The master will go through the block Lanczos iteration and the slaves

will be responsible for the matrix-block vector multiply. The master processor may

also hold part of the matrix and participate in the matrix-block vector multiply if

enough memory is available. The master must have enough memory to hold the

seven block vectors in the Lanczos iteration. The slaves must have enough memory

to hold their portion of the matrix and only 2 block vectors.

Suppose we have P processors all equal in speed and memory. We let one be

the master and the remaining P � 1 be the slaves. If the matrix B has a total of

k nonzero entries, we partition the rows of B onto the s slaves so that each slave

has approximately k=(P � 1) nonzero entries. When the master needs the product

of B

T

B with block vector w

i

, it will send a copy of w

i

to all the slaves. The slaves

will multiply their rows of B by w

i

. Then each slave will multiply the transpose of

their rows of B with the portion of the block vector (Bw

i

) that they just computed.

This will give a block vector that is a partial result. The product of B

T

� (Bw

i

) is

obtained by summing the partial results on all slaves. This takes order log

2

(P � 1)

communications of block vectors.

Let's take a look at the memory requirements for the RSA-130 matrix. The

exact size of the matrix was 3,504,823 � 3,516,502 of density 34 (approximately 140

million nonzero entries). Since there are 4 bytes in a computer word,

2

storing the

seven block vectors requires � 3:5� 4� 7 = 98 megs of memory. It takes 4 bytes to

store each nonzero entry, so storing the entire matrix required � 4�140 = 560 megs

of memory. Thus, for a single machine to solve this system, it would need about

560 + 98 = 658 megs of memory. This is rather large, but not impossible to �nd.

2

The Cray C90 Supercomputer has 8 byte words. They took advantage of this when

they originally solved the matrix, so the block vectors actually used up about 196 megs of

memory.
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However, it is not as di�cult to �nd 8 workstations with 128 megabytes each. This

is all that is needed for our method: the master must have 98 megs to store the 7

block vectors, and the 7 slaves each need 560=7 = 80 megs for their portions of the

matrix plus 28 megs to store the two block vectors.

Initially we tried our method on some of the matrices for the 70 and 80 digit

numbers from appendix E, using four SPARC 5 workstations with communication

over the Ethernet. We had the master participating in the matrix-block vector

multiply, doing about the same amount of work as each of the slaves. It took almost

twice as much time as it would have on a single workstation. The running time was

dominated by the communication cost.

We then tried running our program on 5 processors of an IBM SP2 (MIMD)

parallel computer. The SP2 processors are RS/6000's running at 66.7 MHz.

They communicate through a bidirectional multistage switch of bandwidth 40

megabytes/second. We solved a 78,886�81,194 factoring matrix of density � 34

in about 24 minutes (real time). We also ran it on the matrix from our 116 digit

number (see section 3.8). The 190,211�196,701 matrix of density � 40 was solved

in 2 hours and 45 minutes. The communication time was about equal to the

matrix-block vector multiply time.

Our method of parallelization is not the ultimate answer, but it is a starting

point. It is a method that will work and is relatively easy to program. Using 8

processors on an IBM SP2, we should be possible to handle a matrix the size of

RSA-130 in about one month. Adding more processors may not improve the speed

because of the increased cost of communication. On the other hand, a faster switch

for communication between processors may signi�cantly increase the speed. The

time required for this method make it not quite practical to handle a matrix with

19 million rows and columns.
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4.5 Other ideas for parallelizing iterative methods

Our method of parallelization for block Lanczos involves constantly having to syn-

chronize the processors after every matrix-block vector multiply. This synchroniza-

tion can slow down the iteration signi�cantly, so it would be better if we could

program it so that communication happens less frequently. One way of doing this is

to run the algorithm as if the word size was much larger than 32, for example 320.

The number of iterations decreases by a factor of 10, but each iteration will require

multiplying the matrix by the block vector which is in 10 separate chunks. So the

overall speed of the Lanczos iteration is about the same (assuming the other parts of

the code are still negligible, which might not be true), but synchronization happens

one tenth as often.

Another idea is to try a MIMD version of the Lanczos implementation in [5].

Or, probably better than the other ideas, is to try to parallelize block Wiede-

mann instead. Block Wiedemann has one big advantage over block Lanczos: the

fact that it doesn't require multiplication by B

T

. This can cut down on the commu-

nication quite a bit. For block Lanczos, some processors are doing order �(log

2

P )

communications of block vectors per iteration (P is the number of processors). But

when only B is being multiplied by a block vector, each processor will get a fraction

(on average, about 1=P ) of the result. These fractions must be traded among each

other so all processors have the entire result. The total amount of data that needs

to be communicated is �(1) block vectors for each processor, which also can be done

in log

2

P steps. Thus, with block Wiedemann, increasing the number of processors

will not make as much of an impact on communication speed. For example, suppose

P = 4 and each processor has one fourth of the matrix. Then after the local multiply,

each processor will have one fourth of the result. The 4 processors must exchange

their portion of the result vector with each other. This is done in two steps. In step
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1, the �rst two processors trade their portion of the result with each other while the

last two processors do the same. Now all processors have half of the result vector. In

step 2, the �rst processor trades its half of the result with the third processor, while

the second processor trades with the fourth. Now each processor has the result, and

has sent and received

1

4

+

1

2

=

3

4

block vectors. In general, if P = 2

k

, then each

processor sends and receives

2

k

�1

2

k

block vectors total. But in block Lanczos, some

processors will trade k full vectors at each iteration.

Finally we remark that Odlyzko has suggested from the beginning a combination

of structured Gauss and an iterative method [18]. To the author's knowledge this

has not been tested yet.



Chapter 5

Conclusion

We have demonstrated that one can factor with siqs about two times faster than

with mpqs alone, at least for numbers between 60 and 80 digits. Moreover, we have

given data showing how we arrived at the factor of 2, so that readers can draw their

own conclusion on the accuracy of our experiments.

We can think of three possible reasons why siqs was not used for the RSA-129

project. The �rst is that the leaders of the project were not aware that siqs is

substantially faster than mpqs. We hope this thesis removes any doubt. Second,

many of the machines in the RSA-129 project had very limited memory. As we

remarked in section 2.1, it is not necessary to store all 2B

j

a

�1

mod p values to get

a noticeable speedup over the regular mpqs. In fact, one could use a combination of

siqs and mpqs for a large project like this, using mpqs only on the machines that have

very small memory. Third, it was not obvious how to distribute the computation.

Some very practical ideas for this were suggested in [1].

We have also suggested a method of parallelizing the block Lanczos iterative

method, and tried it out. Our method was somewhat successful, but not practical for

handling a matrix that might come from a nfs factorization of a 512 bit number. We

should not lose hope, however, since other ideas for parallelizing iterative methods

were suggested. We expect these ideas to improve the timings signi�cantly.
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Appendix A

QS analysis

Here we give a very rough heuristic proof that the quadratic sieve has running time

e

(1+o(1))

p

logN log logN

using the best choice of F , e

(

1

2

+o(1))

p

logN log logN

.

First note that to sieve m locations, the amount of time spent is m

P

p2f:b:

2

p

�

m log log F . The residues are approximately

p

N . If we assume these residues are

like random, the probability of �nding a smooth one is� u

�u

where u =

logN

1

2

logF

[4]. So

the expected number of locations we need to consider to get one smooth is u

u

, which

takes time approximately u

u

log logF . Altogether we need order F= log F smooths,

so the expected running time is T = u

u
F

logF

log logF . Note that the amount of time

to do the trial division on the relations that we expect to be smooth is negligeable.

We are also temporarily ignoring the time for the matrix stage of the algorithm.

We want to �nd the choice of F that maximizes this function, so we must compute

dT

dF

and set it equal to 0.

dT

dF

= u

u

(�u)(1 + log u)

F logF

F

log F

log logF+

logF � 1

log

2

F

(u

u

) log logF+

1

F logF

(u

u

)

F

log F

=

u

u

log logF

log

2

F

"

�u(1 + log u) + (logF � 1) +

1

log logF

#

:

For this to be zero, we must have

u(1 + log u) = log F � 1 +

1

log logF

Our claim is that F = e

(

1

2

+o(1))

p

logN log logN

is the solution to this equation.

To see this, note that right hand side of the equation is just logF = (

1

2

+
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o(1))

p

logN log logN , since the other terms get swallowed by the o(1). For the

left hand side, u =

logN

1

2

logF

=

1

2

logN

1

2

(1 + o(1))

p

logN log logN

= (1 + o(1))

q

logN= log logN

because 1=(1 + o(1)) = 1 + o(1). Also, log u =

log(1 + o(1)) +

1

2

log logN �

1

2

log log logN:

Hence, the u(1 + log u) is just

1

2

(1 + o(1))

q

logN log logN;

again hiding the dirty stu� behind the o(1). We have shown, for this choice of F ,

the two sides are equal. The running time is Fe

u log u

�

log logF

logF

�

= e

(

1

2

+o(1))

p

logN log logN

e

1

2

(1+o(1))

p

logN log logN

 

log logF

logF

!

= e

(1+o(1))

p

logN log logN

:

Of course, we also have to consider the time for the matrix stage. The matrix

will have order F= logF rows and columns, but will be very sparse. Using sparse

matrix methods such as [26] [7] [6] [17], this can be solved in the same time.

Let us remark that we have been a little sloppy in this derivation. The residues

are actually bounded by N

1

2

+�

where epsilon is approximately

logT

logN

. It tends to zero

as N gets large. A di�erent, perhaps more elegant, derivation of the running time

is given in [20].



Appendix B

Extrapolating to 512 bits

The running times of qs and nfs are (conjecturally)

e

(1+o(1))

p

logN log logN

and

e

((64=9)

1

3

+o(1))(logN)

1

3

(log logN)

2

3

respectively. The number of rows and columns in the matrix is asymptotically the

square root of the running times in both cases.

We will ignore the o(1) to estimate comparisons of the matrix size and computing

power requirements for factoring a 512 bit number (155 digits) as compared to 129

or 130 digit numbers.

For nfs, the amount of computing power required is

� e

(64=9)

1

3

(log10

155

)

1

3

(log log10

155

)

2

3

=e

(64=9)

1

3

(log10

130

)

1

3

(log log 10

130

)

2

3

� 29:1

times the computing power for RSA-130. The matrix size would be about 5:4 times

the size of the RSA-130 matrix. Multiplying this by 3:5 million gives a matrix size

of nearly 19 million rows and columns.

For qs, the computing power required is

� e

p

log10

155

log log10

155

=e

p

log10

129

log log10

129

� 107:3

times the computing power for RSA-129. The matrix size would be about 10:4 times

the size of the RSA-129 matrix, which would be about 5:5 million rows and columns.
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Appendix C

Gray codes

We have used a Gray code to obtain all 2

s�1

combinations of �B

1

� : : :�B

s�1

+B

s

.

The formula is:

b

1

:=B

1

+ : : :+B

s

b

i+1

:= b

i

+ 2(�1)

di=2

�

e

B

�

for i = 1 to 2

s�1

� 1

(C.1)

where 2

�

k 2i.

For example, suppose s = 4. Initially, b

1

= +B

1

+B

2

+B

3

+B

4

. The next values

of b

i

are computed in the table below:

i � (�1)

di=2

�

e

b

i+1

1 1 �1 �B

1

+B

2

+B

3

+B

4

2 2 �1 �B

1

�B

2

+B

3

+B

4

3 1 +1 +B

1

�B

2

+B

3

+B

4

4 3 �1 +B

1

�B

2

�B

3

+B

4

5 1 �1 �B

1

�B

2

�B

3

+B

4

6 2 +1 �B

1

+B

2

�B

3

+B

4

7 1 +1 +B

1

+B

2

�B

3

+B

4

Here we want to show that this actually works. In other words, for the 2

s�1

iterations of the formula, we do get all 2

s�1

combinations. Viewing i in binary, we

will number the bits from right to left. The rightmost bit (least signi�cant) will be

referred to as the �rst bit, the second rightmost as the second bit, and so on. The
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value of � is then the bit number of the rightmost 1 in the binary encoding of i.

The value of (�1)

di=2

�

e

depends upon whether di=2

�

e is odd or even. It is even if

and only if bit number � + 1 is 1. To see this, realize that dividing by 2

�

is the

same as shifting the bits to the right � places. Bit number � (which holds the value

1) then gets shifted to the �rst position to the right of the binary point, and bit

number �+1 gets shifted to the rightmost bit prior to the binary point. The ceiling

function rounds up, so the bit prior to the binary place gets 
ipped. Hence, if bit

� + 1 originally was 1, then the rightmost bit of the integer di=2

�

e is 0. Similarly, if

bit � + 1 originally was 0, then the rightmost bit of the integer di=2

�

e is 1. But the

rightmost bit determines if the integer is odd or even.

We can prove that formula (C.1) goes through all combinations by an inductive

argument. For s = 2, b

1

= B

1

+ B

2

and b

2

= �B

1

+ B

2

. Assuming we know the

formula gives us all combinations of �B

1

� : : :�B

s�1

+B

s

for i = 1 to 2

s�1

� 1, we

want to show that it gives all combinations of �B

1

� : : :� B

s

+ B

s+1

for i = 1 to

2

s

� 1. The main points to our argument are:

1. When i runs from 1 to 2

s�1

�1, we get all combinations that have the last two

values (B

s

and B

s+1

) positive.

2. When i = 2

s�1

, B

s

gets switched to negative in b

2

s�1

+1

.

3. For i = 2

s�1

+ 1 to 2

s

� 1, the iteration goes through the same combinations

for the signs of B

1

; : : : ; B

s�1

as the �rst 2

s�1

� 1 iterations, but in the reverse

order. In other words, the signs of B

1

; : : : ; B

s�1

in b

i

will be the same as the

signs of B

1

; : : : ; B

s�1

in b

2

s

�i+1

.

Combining these three points, b

1

; : : : ; b

2

s�1
give the combinations �B

1

: : :�B

s�1

+

B

s

+B

s+1

, and b

2

s�1

+1

; : : : ; b

2

s

�1

give the combinations �B

1

: : :�B

s�1

�B

s

+B

s+1

,

which will complete the proof.
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We can assume (1) is true by the induction hypothesis. (2) follows easily by

checking the computation in the iteration (C.1). To prove (3), we use another

inductive argument. We know the signs of B

1

; : : : ; B

s�1

for b

2

s�1
are the same as

those for b

2

s�1

+1

because of (2). Assume it is true for b

i+1

and b

2

s

�i

, we want to show

it also holds for b

i

and b

2

s

�i+1

. We claim the change at iteration i is the same as the

change at iteration 2

s

� i, but the opposite sign. In other words, if b

i+1

= b

i

+ 2B

�

then b

2

s

�i+1

= b

2

s

�i

� 2B

�

, and if b

i+1

= b

i

� 2B

�

, then b

2

s

�i+1

= b

2

s

�i

+ 2B

�

(1 � i � 2

s�1

� 1). It is not di�cult to see that 2

�

k 2i if and only if 2

�

k 2(2

s

� i).

To show the signs are opposite for B

�

, we show bit number � + 1 of i is di�erent

than bit number � + 1 of 2

s

� i. We know bit number � is 1 in both cases, and we

know the sum of i and 2

s

� i has all 0 bits except bit number s+ 1. Since i has at

most s� 1 bits, bit � + 1 in the sum must be a zero, and there is a carry of 1 from

the sum at bit �, which means the sum in the � + 1 position must be a 1. Hence

one of the bits is 1 and the other is 0.

Completing the proof, if b

i+1

= b

i

+ 2B

�

then b

i

= b

i+1

� 2B

�

. The signs of

B

1

; : : : ; B

s�1

for b

i+1

are the same as the signs for b

2

s

�i

, by induction. So the signs

for b

i

are going to be the same as for b

2

s

�i

, except B

�

becomes negative. But the

same is true for b

2

s

�i+1

since b

2

s

�i+1

= b

2

s

�i

� 2B

�

. The case for b

i+1

= b

i

� 2B

�

and

b

2

s

�i+1

= b

2

s

�i

+ 2B

�

is proved similarly.



Appendix D

Timings

All times listed are of the form minutes:seconds.

M = 600,000 F = 60,000

BLOCKSIZE number smooths siqs time mpqs time

600,000 100 n.a. 2:37

300,000 100 n.a. 2:34

200,000 100 n.a. 2:26

100,000 100 n.a. 2:26

50,000 100 n.a. 2:28

Table D.1: cache experiment for �rst 60 digit number

BLOCKSIZE = 100,000 F = 60,000 3,101 primes in f.b.

M siqs time (smooths) mpqs time (smooths)

1,500,000 n.a. 2:38 (100)

1,000,000 n.a. 2:40 (101)

700,000 n.a. 2:53 (100)

600,000 1:52 (110) 2:26 (100)

500,000 n.a. 2:37 (100)

400,000 1:35 (116) 3:04 (100)

300,000 1:43 (106) 2:54 (100)

200,000 1:11 (102) 3:15 (100)

100,000 1:13 (110) 4:59 (100)

Table D.2: siqs vs mpqs for �rst 60 digit number
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BLOCKSIZE = 100,000 F = 60,000

program M time to get � 1,700 smooths

mpqs 600,000 40:33

mpqs 500,000 40:35

siqs 200,000 19:20

siqs 100,000 20:45

Table D.3: total time to complete factorization, �rst 60 digit number

BLOCKSIZE =150,000 F = 60,000 2,964 primes in f.b.

M siqs time (smooths) mpqs time (smooths)

1,500,000 n.a. 4:07 (100)

1,350,000 n.a. 3:07 (100)

1,200,000 n.a. 2:46 (100)

1,050,000 n.a. 3:08 (100)

900,000 n.a. 2:47 (100)

750,000 n.a. 2:56 (101)

600,000 2:10 (115) 3:07 (101)

300,000 1:47 (101) 4:23 (100)

150,000 1:34 (102) n.a.

Table D.4: siqs vs mpqs for second 60 digit number

F = 60,000 3,045 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

6,000,000 150,000 n.a. 15:15 (300)

4,500,000 150,000 n.a. 14:24 (300)

3,000,000 150,000 n.a. 12:02 (300)

2,100,000 150,000 n.a. 11:50 (300)

1,500,000 150,000 n.a. 12:57 (300)

1,200,000 150,000 n.a. 10:30 (300)

900,000 150,000 n.a. 11:18 (302)

600,000 150,000 8:22 (317) 11:50 (300)

300,000 150,000 6:08 (303) 12:01 (300)

200,000 100,000 6:15 (304) n.a.

150,000 150,000 5:30 (303) 17:05 (300)

100,000 100,000 5:01 (300) n.a.

Table D.5: siqs vs mpqs for third 60 digit number
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F primes in f.b. best M mpqs expected time without large primes

150,000 6,814 1,500,000 1840.5 min

200,000 8,870 3,300,000 1438.8 min

300,000 12,876 4,500,000 1111.2 min

350,000 14,796 6,000,000 1030.5 min

500,000 20,512 5,400,000 975.2 min

600,000 24,383 4,500,000 1035.3 min

800,000 31,845 6,600,000 1060.2 min

Table D.6: factor base experiment for �rst 70 digit

F = 350,000 14,796 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

9,000,000 200,000 n.a. 91:41 (1201)

8,000,000 200,000 n.a. 88:45 (1201)

6,600,000 200,000 n.a. 91:27 (1201)

6,000,000 300,000 n.a. 85:40 (1201)

6,000,000 200,000 n.a. 83:50 (1201)

6,000,000 150,000 n.a. 84:59 (1201)

5,400,000 200,000 n.a. 88:57 (1200)

4,200,000 200,000 n.a. 87:52 (1201)

3,000,000 200,000 n.a. 89:16 (1200)

2,400,000 200,000 n.a. 86:39 (1201)

1,200,000 200,000 n.a. 101:24 (1200)

900,000 150,000 n.a. 106:02 (1200)

200,000 200,000 39:06 (1206) n.a.

150,000 150,000 42:44 (1206) n.a.

Table D.7: siqs vs mpqs for �rst 70 digit number
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F = 350,000 15,007 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

9,200,000 200,000 n.a. 152:28 (1200)

8,000,000 200,000 n.a. 153:44 (1200)

7,200,000 200,000 n.a. 144:34 (1200)

6,400,000 200,000 n.a. 144:15 (1200)

5,600,000 200,000 n.a. 148:11 (1201)

4,800,000 200,000 n.a. 148:57 (1201)

4,400,000 200,000 n.a. 143:44 (1200)

4,000,000 200,000 n.a. 134:18 (1200)

3,600,000 300,000 n.a. 143:35 (1200)

3,600,000 200,000 n.a. 138:46 (1200)

3,600,000 150,000 n.a. 143:22 (1200)

3,200,000 200,000 n.a. 139:55 (1200)

2,800,000 200,000 n.a. 148:00 (1200)

2,400,000 200,000 n.a. 159:54 (1200)

2,000,000 200,000 n.a. 151:53 (1201)

1,600,000 200,000 n.a. 147:09 (1200)

1,200,000 200,000 n.a. 160:49 (1200)

400,000 200,000 76:07 (1205) n.a.

200,000 200,000 64:43 (1207) n.a

Table D.8: siqs vs mpqs for second 70 digit number

F = 350,000 15,088 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

15,000,000 200,000 n.a. 50:02 (1500)

9,600,000 200,000 n.a. 46:31 (1502)

8,000,000 200,000 n.a. 47:53 (1502)

7,200,000 200,000 n.a. 45:36 (1504)

6,400,000 200,000 n.a. 45:35 (1502)

5,600,000 200,000 n.a. 45:42 (1500)

4,800,000 200,000 n.a. 44:23 (1501)

4,000,000 200,000 n.a. 46:50 (1501)

3,600,000 200,000 n.a. 46:17 (1501)

3,200,000 200,000 n.a. 43:25 (1500)

2,800,000 200,000 n.a. 43:58 (1501)

2,400,000 200,000 n.a. 45:13 (1501)

2,000,000 200,000 n.a. 46:17 (1500)

1,000,000 200,000 n.a. 51:09 (1500)

200,000 200,000 22:18 (1516) n.a.

150,000 150,000 23:01 (1516) n.a.

Table D.9: siqs vs mpqs for third 70 digit number
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F primes in f.b. best M mpqs expected time, no large primes

750,000 30,112 6,000,000 3428.8 min

900,000 35,487 6,000,000 3252.1 min

1,000,000 39,059 6,000,000 3184.7 min

1,200,000 46,228 6,000,000 3300.1 min

1,500,000 56,887 6,000,000 3404.9 min

Table D.10: factor base experiment for �rst 80 digit number

F = 900,000 35,487 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

15,000,000 300,000 n.a. 281:13 (2803)

12,000,000 300,000 n.a. 268:02 (2801)

9,000,000 300,000 n.a. 272:18 (2804)

7,800,000 300,000 n.a. 259:37 (2802)

7,200,000 300,000 n.a. 264:42 (2800)

6,600,000 300,000 n.a. 259:04 (2800)

6,000,000 400,000 n.a. 268:27 (2800)

6,000,000 300,000 n.a. 256:36 (2800)

6,000,000 200,000 n.a. 259:54 (2800)

5,400,000 300,000 n.a. 273:25 (2800)

4,200,000 300,000 n.a. 270:58 (2800)

3,600,000 300,000 n.a. 280:01 (2800)

3,000,000 300,000 n.a. 271:16 (2800)

300,000 300,000 125:17 (2861) n.a.

300,000 150,000 129:38 (2861) n.a.

200,000 200,000 124:25 (2858) n.a.

Table D.11: siqs vs mpqs for �rst 80 digit number
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F = 900,000 35,559 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

15,000,000 300,000 n.a. 401:22 (2800)

12,000,000 400,000 n.a. 394:56 (2801)

12,000,000 300,000 n.a. 387:40 (2801)

12,000,000 200,000 n.a. 388:23 (2801)

9,000,000 300,000 n.a. 395:21 (2801)

7,800,000 300,000 n.a. 389:32 (2800)

7,200,000 300,000 n.a. 375:58 (2800)

6,600,000 300,000 n.a. 385:03 (2800)

6,000,000 400,000 n.a. 397:59 (2800)

6,000,000 300,000 n.a. 390:15 (2800)

6,000,000 200,000 n.a. 393:06 (2800)

5,400,000 300,000 n.a. 383:03 (2800)

4,200,000 300,000 n.a. 403:07 (2800)

3,000,000 300,000 n.a. 415:30 (2800)

300,000 300,000 175:59 (2801) n.a.

200,000 200,000 183:44 (2838) n.a.

Table D.12: siqs vs mpqs for second 80 digit number

F = 900,000 35,650 primes in f.b.

M BLOCKSIZE siqs time (smooths) mpqs time (smooths)

15,000,000 300,000 n.a. 536:08 (2802)

12,000,000 300,000 n.a. 523:58 (2800)

9,000,000 600,000 n.a. 512:36 (2801)

9,000,000 300,000 n.a. 498:03 (2801)

9,000,000 200,000 n.a. 511:48 (2801)

8,400,000 300,000 n.a. 513:45 (2800)

7,800,000 300,000 n.a. 498:42 (2800)

7,200,000 300,000 n.a. 502:25 (2800)

6,000,000 300,000 n.a. 504:59 (2801)

5,400,000 300,000 n.a. 513:46 (2801)

2,400,000 300,000 n.a. 535:51 (2800)

1,200,000 300,000 n.a. 679:42 (2800)

600,000 300,000 248:39 (2807) n.a.

400,000 400,000 236:53 (2818) n.a.

400,000 200,000 234:54 (2818) n.a.

300,000 300,000 226:26 (2816) n.a.

300,000 150,000 233:04 (2816) n.a.

200,000 200,000 229:41 (2804) n.a.

Table D.13: siqs vs mpqs for third 80 digit number



Appendix E

Full factorization tables

F = 350,000 14,796 primes in f.b.

M BLOCKSIZE smooths partials matches time

mpqs 6,000,000 200,000 7,501 109,386 10,669 546:15

siqs 200,000 200,000 7,511 98,730 9,175 246:43

Table E.1: full factorization data, �rst 70 digit number

F = 350,000 15,007 primes in f.b.

M BLOCKSIZE smooths partials matches time

mpqs 4,000,000 200,000 7,500 117,317 11,953 917:28

siqs 200,000 200,000 7,508 110,113 10,882 411:58

Table E.2: full factorization data, second 70 digit number

F = 350,000 15,088 primes in f.b.

M BLOCKSIZE smooths partials matches time

mpqs 3,200,000 200,000 7,504 83,260 7,499 211:53

siqs 200,000 200,000 7,707 80,969 7,036 112:06

Table E.3: full factorization data, third 70 digit number
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F = 900,000 35,487 primes in f.b.

M BLOCKSIZE smooths partials matches time

mpqs 6,000,000 300,000 18,102 189,800 16,914 1719:47

siqs 200,000 200,000 18,231 190,737 16,453 801:25

Table E.4: full factorization data, �rst 80 digit number

F = 900,000 35,559 primes in f.b.

M BLOCKSIZE smooths partials matches time

mpqs 7,200,000 300,000 18,002 224,497 20,655 2502:37

siqs 300,000 300,000 18,018 211,070 18,694 1188:25

Table E.5: full factorization data, second 80 digit number

F = 900,000 35,650 primes in f.b.

M BLOCKSIZE smooths partials matches time

mpqs 9,000,000 300,000 18,000 241,410 22,679 3232:24

siqs 300,000 300,000 18,041 221,369 19,553 1446:01

Table E.6: full factorization data, third 80 digit number


